Cells don’t like to be alone
Antioxidants Could Rescue Starving Tumors-to-be
http://focus.hms.harvard.edu/2009/082809/antioxidants.shtml
Detached Early Cancer Cells May Die from Lack of NourishmentAntioxidants Could Rescue Starving Tumors-to-beCells don’t like to be alone. In the early stages of tumor formation, a cell might be pushed out of its normal environment due to excessive growth. But a cell usually responds to this homeless state by dismantling its nucleus, packing up its DNA, and offering itself to be eaten by immune cells. Simply put, the homeless cell kills itself. This process, known as apoptosis, typically stops potential cancer cells before they have a chance to proliferate. Photo by Liza Green, HMS Media Services Now, researchers from the lab of Joan Brugge, the Louise Foote Pfeiffer professor of cell biology and chair of that department, have discovered another mechanism that these precancerous, homeless cells use to commit suicide. By studying two different types of human breast epithelial cells, the researchers found that when separated from their natural environment, these cells lose their ability to harvest energy from their surroundings. Eventually, they starve. “We originally thought that in order for cells to survive outside their normal environment, they would simply need to suppress apoptosis,” said Brugge, senior author on the paper, which appeared online Aug. 19 in Nature. “But our studies indicate that this activity is not sufficient to prevent the demise of homeless cells. Even if they escape apoptosis, these cells can’t transport enough glucose to sustain an energy supply.” Surprisingly, metabolic function is restored if antioxidant activity is increased inside the cells, allowing them to use energy pathways that do not rely on glucose. “It raises the interesting idea that antioxidants, which are typically thought to be protective because they prevent genomic damage, might be allowing these potentially dangerous cells to survive,” said first author Zachary Schafer, assistant professor at the University of Notre Dame and a former postdoc in Brugge’s lab.
“We think that genes with antioxidant activity play a much bigger role than antioxidant compounds administered from outside the body,” said Brugge. Beyond Cell Suicide The team had previously reported that when cells were endowed with a cancer-causing gene that prevents them from committing suicide, they still died when cut off from their extracellular environment. This puzzled the researchers since they had long thought that apoptosis was the only way the cells could die. In the recent study, Schafer and colleagues took a closer look, measuring the levels of proteins and molecules associated with metabolic activity in the displaced, but apoptosis-resistant, cells. They found that the cells had become incapable of taking up glucose, their primary energy source. Under the microscope, the cells also displayed telltale signs of oxidative stress, a harmful accumulation of oxygen-derived molecules called reactive oxygen species (ROS). The result was a halt in the production of ATP, the molecular lifeblood that transports energy in the cells. The unmoored cells were literally starving to death. “The idea that a lack of extracellular matrix can prevent cells from accessing nutrients hasn’t been shown conclusively before,” said Schafer. “Loss of glucose transport, decreased ATP production, increased oxidative stress—all those things turn out to be interrelated.” Tumor Metabolism To figure out what was wrong, the researchers took a direct approach: they tried to fix it. Schafer engineered the homeless cells to express high levels of a gene, HER2, known to be hyperactive in many breast tumors. He also treated the cells with antioxidants in an attempt to relieve oxidative stress and help the cells survive. Both strategies worked. The cells with the breast cancer gene regained glucose transport, preventing ROS accumulation, and recovered their ATP levels. The antioxidant-treated cells also survived, but by using fatty acids instead of glucose as an energy source.
The researchers are currently planning to test the effects of antioxidant genes, some of which are abnormally regulated in human tumors, and a wider range of antioxidants in animal models. They also plan on characterizing the metabolic consequences of matrix detachment in more detail. “Ultimately,” Brugge said, “we want to understand enough about the metabolism of tumor cells so that new types of drugs can be designed to target them.” Students may contact Joan Brugge at joan_brugge@hms.harvard.edu for more information. Conflict Disclosure: The authors declare no conflict of interest. Funding Sources: The National Cancer Institute and the National Institutes of Health; the authors are solely responsible for the content of this work. top |
Labels: antioxidants, cancer, cellular, diet and nutrition, disease management, health, health-supporting, healthcare, medical, medicine, nourishment, nutrition, oncology, starvation, vegan, vegetables, vegetarian
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home